实矩阵

时间:2024-03-01 21:37:47编辑:简云君

指的是矩阵中所有的数都是实数的矩阵。如果一个矩阵中含有除实数以外的数,那么这个矩阵就不是实矩阵。

实对称矩阵:如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji)(i,j为元素的脚标),则称A为实对称矩阵。

主要性质:

1、实对称矩阵A的不同特征值对应的特征向量是正交的。

2、实对称矩阵A的特征值都是实数,特征向量都是实向量。

3、n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。

4、若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。

上一篇:特招

下一篇:锁骨有痣的男人